神经隐式表示最近引起了机器人界的广泛关注,因为它们具有表现力,连续和紧凑。然而,基于稀疏激光雷达输入​​的城市规模增量隐式密集映射仍然是一个不足的挑战。为此,我们成功地构建了第一个城市规模的增量神经映射系统,该系统具有由环境级别和实例级建模组成的全景表示。给定稀疏发光点云流,它维护了一个动态生成模型,该模型将3D坐标映射到签名的距离字段(SDF)值。为了解决城市规模空间中不同级别的几何信息的困难,我们提出了一种定制的三层抽样策略,以动态采样全球,本地和近乎表面的域。同时,为了实现高保真度映射,引入了特定于类别的先验,以更好地对几何细节进行建模,从而导致全景表示。我们使用定量和定性结果评估了公共Semantickitti数据集,并证明了新提出的三层抽样策略和泛型表示的重要性。代码和数据将公开可用。
translated by 谷歌翻译
The Position Embedding (PE) is critical for Vision Transformers (VTs) due to the permutation-invariance of self-attention operation. By analyzing the input and output of each encoder layer in VTs using reparameterization and visualization, we find that the default PE joining method (simply adding the PE and patch embedding together) operates the same affine transformation to token embedding and PE, which limits the expressiveness of PE and hence constrains the performance of VTs. To overcome this limitation, we propose a simple, effective, and robust method. Specifically, we provide two independent layer normalizations for token embeddings and PE for each layer, and add them together as the input of each layer's Muti-Head Self-Attention module. Since the method allows the model to adaptively adjust the information of PE for different layers, we name it as Layer-adaptive Position Embedding, abbreviated as LaPE. Extensive experiments demonstrate that LaPE can improve various VTs with different types of PE and make VTs robust to PE types. For example, LaPE improves 0.94% accuracy for ViT-Lite on Cifar10, 0.98% for CCT on Cifar100, and 1.72% for DeiT on ImageNet-1K, which is remarkable considering the negligible extra parameters, memory and computational cost brought by LaPE. The code is publicly available at https://github.com/Ingrid725/LaPE.
translated by 谷歌翻译
虽然视觉变压器(VT)体系结构在计算机视觉中越来越流行,但纯VT模型在微小的数据集上的性能较差。为了解决这个问题,本文提出了改善小型数据集VT性能的地方指南。我们首先分析,由于VTS中自我注意的机制的高灵活性和内在的全球性,因此很难用有限的数据来学习局部信息,这对于理解图像非常重要。为了促进本地信息,我们通过模仿已经训练有素的卷积神经网络(CNN)的特征来实现VT的当地指南,灵感来自CNN的内置本地到全球层次结构。在我们的双任务学习范式下,由低分辨率图像训练的轻型CNN提供的局部指导足以加速收敛并在很大程度上提高VT的性能。因此,我们的本地指导方法非常简单有效,可以作为小型数据集中VT的基本性能增强方法。广泛的实验表明,我们的方法在小型数据集中从头开始训练时可以显着改善VT,并且与不同种类的VT和数据集兼容。例如,我们提出的方法可以将各种VT在微型数据集上的性能提高(例如,DEIT 13.07%,T2T为8.98%,PVT为7.85%),并使更强大的基线PVTV2提高了1.86%至79.30%,显示出来小型数据集上的VT潜力。该代码可从https://github.com/lkhl/tiny-transformers获得。
translated by 谷歌翻译
在本文中,我们表明样品的欧几里得规范的差异可以在空间翻译和划分归一化之后对语义差异甚至混乱做出贡献。为了解决这个问题,我们提出了一种直观但有效的方法,以均衡样品向量的欧几里得规范。具体来说,我们$ l_2 $ - 在批准之前将每个样品向量归一化,因此样品向量的幅度相同。由于所提出的方法结合了$ L_2 $归一化和批量归一化,因此我们将我们的方法称为$ L_2 $ bn。 $ l_2 $ bn可以增强阶层内特征的紧凑性,并扩大阶层间特征的差异。此外,它可以帮助梯度收敛到稳定的量表。 $ l_2 $ bn易于实现,并且可以在没有任何其他参数和超参数的情况下发挥其效果。因此,它可以用作神经网络的基本归一化方法。我们通过对图像分类和声学场景分类任务进行各种模型的广泛实验来评估$ L_2 $亿美元的有效性。实验结果表明,$ L_2 $ bn能够提高各种神经网络模型的概括能力,并取得了可观的性能改进。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译